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Quantisation in a non-linear gauge and Feynman rules 

R Parthasarathy 
Institute of Mathematical Sciences, Madras 600 113, India 

Received 13 June 1988 

Abstract. Certain aspects of the use of a non-linear gauge fixing condition in S U ( N )  gauge 
field theory are studied. The Faddeev-Popov ghost Lagrangian is obtained systematically 
using two different but related methods. Feynman rules are explicitly derived from the 
generating functional for the full Lagrmgian in non-linear gauge. The tree-level amplitude 
for gauge field-gauge field scattering is shown to be independent of the parameter signalling 
the non-linearity of the gauge fixing condition and hence the same as the one in the linear 
covariant (Lorentz) gauge. The full Lagrangian is shown to have BRS invariance and the 
explicit form for BRS transformations is given. Using this, the corresponding Slavnov- 
Taylor identities are derived. The Lagrange multiplier formalism is used to derive the 
ghost Lagrangian independently and shown to be the same as that obtained by the gauge 
variation of the gauge fixing condition. The corresponding situation in Abelian gauge 
theories is reviewed. The coupling of the ghosts with gauge fields and Gribov ambiguity 
are discussed. 

1. Introduction 

With the advent of gauge theories and their remarkable success in describing the 
physics of elementary particles, it has become necessary to re-examine some of the 
established ideas in quantum field theories. It is well known that the quantisation of 
a gauge theory, either in the canonical formalism or in the path integral approach, 
involves the gauge fixing condition in a non-trivial way. In Abelian gauge theories, 
like the electromagnetic field, the essential role played by the gauge fixing condition 
is to eliminate the unphysical degrees of freedom of the photon field and there are [ 13 
well defined prescriptions for carrying out this programme. In the path integral 
approach, the gauge fixing condition introduces fictitious ghost fields which do not 
couple with the gauge field. This statement, however, is not true if one employs a 
non-linear gauge fixing condition for the electromagnetic field, as we shall see later. 
Further, the gauge fixing condition in Abelian theories is unique in the sense that there 
are no Gribov ambiguities. Again, this statement is true only when one uses a linear 
gauge fixing condition at zero temperature. Use of non-linear gauges gives rise to 
Gribov ambiguity even at zero temperature. At non-zero temperature it has been shown 
that there is Gribov ambiguity if one employs a covariant gauge fixing condition [2] 
such as the Lorentz gauge, while such an ambiguity does not exist if one uses 
non-covariant gauges such as the Coulomb gauge. In quantising the non-Abelian 
theories, the gauge fixing condition introduces ghost fields which couple with the 
non-Abelian gauge fields in a non-trivial way. Further, whatever one chooses for the 
gauge fixing condition (except for algebraic gauges) Singer [3] proved that there will 
always be the Gribov ambiguity. Following the usual wisdom [4], one realises that 
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the existence of Gribov ambiguities does not bother us as far as the perturbative sector 
is concerned. 

Quite apart from the difficulties of the Gribov ambiguity in non-Abelian gauge 
theory, the question of finding the correct Lagrangian for the fictitious ghost fields has 
been raised and discussed in the mid-l970s, since the fundamental work of Feynman 
[5]. By the correct Lagrangian, we mean the one which eventually leads to unitarity 
of the S matrix. There are two different but related formalisms for the treatment of 
fictitious ghost fields. In the first method given by Faddeev and Popov [6] and discussed 
by DeWitt [7], Mandelstam [8], 't Hooft [9], Lee and Zinn-Justin [lo] and Hsu [ l l ]  
one uses the gauge fixing condition and its variation under general gauge transforma- 
tions to obtain fictitious fields and their interaction with the gauge fields. In the second 
method, due to Hsu and Sudarshan [12], one employs the method of Lagrange 
multiplier fields and the equations of motion that follow to introduce the fictitious 
fields. In most cases studied the two methods give an identical Lagrangian for the 
fictitious fields which restore both unitarity and gauge invariance. The central role 
played by gauge theories in our understanding of elementary particle interactions 
provides the motivation for a detailed study of the quantum Yang-Mills theory in a 
variety of gauges. Christ [13] thus studied the operator ordering and Feynman rules 
in general non-covariant gauges. 

It is interesting to note that most works in non-Abelian theories involve only linear 
gauge fixing conditions. It has been taken for granted [14] that there will be no 
difficulty in quantising a gauge theory in a non-linear gauge and that the resulting 
Feynman rules will be nearly the same. So it is worthwhile to examine systematically 
gauge theory in non-linear gauges. Hsu and Sudarshan [12] have considered a par- 
ticular non-linear (more precisely bi-linear) gauge fixing condition for the spon- 
taneously broken electroweak gauge theory in which some of the gauge bosons (W*, 
Z) acquired mass and demonstrated the advantages of their Lagrange multiplier 
formalism, over the first method, in bringing out the physical reasons for the restoration 
of the unitarity of the S matrix. 't Hooft and Veltman [ 151 have employed a non-linear 
gauge fixing of the type 

9 = a,A+ + AA,AC" ( 1 )  
for quantising the electromagnetic field (an Abelian theory). They obtain the Feynman 
rules for QED in this gauge which are quite diferent from the usual ones. In particular, 
the photon field couples with the ghost field and has cubic and quartic couplings with 
itself. However the photon-photon scattering amplitude at the tree level has been 
shown to be zero, as it should be, despite these exotic couplings. By using Ward 
identities the amplitude is shown to be independent of A at one-loop level. 

With this in mind, and with the motivation of studying non-Abelian gauge theory 
in a non-linear gauge, we consider in this paper a non-Abelian generalisation of the 
non-linear gauge fixing condition ( 1 )  by taking 

9" = a,Awa + Ad abcAiAjrc (2) 

with dabc as the symmetric coefficients of SU( N )  algebra, N > 2. This is a natural 
generalisation of ( 1 )  and is different from the bi-linear gauge conditions examined in 
[ 121. The motivation here is ( a )  to examine the non-linear gauges systematically for 
non-Abelian theory as has been done in [ 151 for the Abelian case, ( b )  to explicitly 
derive the Feynman rules in this case, (c )  to check whether the gauge field-gauge field 
scattering amplitudes are independent of A, ( d )  to examine whether or not the full 
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Lagrangian has BRS invariance and ( e )  to examine whether the fictitious ghost 
Lagrangians obtained by the aforementioned two methods are the same, and thereby 
unique. At this stage we have in mind no specific application of this to a process. 
Presumably, non-perturbative processes can be studied in this gauge. Therefore we 
consider a general SU( N )  gauge theory. 

The paper is organised as follows. In 0 2 the use of the non-linear gauge (1) for 
Abelian theory is briefly reviewed. In § 3 non-Abelian gauge theory, based upon the 
gauge group SU( N ) ,  is studied using gauge (2) by employing the first method, namely 
the Faddeev-Popov formalism. The Feynman rules are derived and displayed. The 
tree-level on-mass shell amplitude for gauge field-gauge field scattering is shown to 
be independent of A. In § 4 the full Lagrangian is shown to have BRS invariance and 
an expression for the conserved BRS current is derived. Using BRS invariance, Slavnov- 
Taylor identities are obtained which can be used to show the independence of the 
gauge field-gauge field scattering amplitude on A by following the steps in [15]. In 
D 5 the Lagrange multiplier formalism is used to derive the ghost Lagrangian, and then 
is applied to the case under consideration and to Abelian theory. The resulting 
Lagrangian turns out to be identical to the one derived in § 3. Section 6 contains a 
summary. 

2. Review of Abelian gauge theory in a non-linear gauge 

Consider the Lagrangian density for U( l )  gauge theory: 

which is invariant under the gauge transformation A, + A, + a,A. For the reasons 
given in the introduction, we fix the gauge 

%(A) = 0 (4) 

where @(A) is taken to be a non-linear differential equation for A,. Following the 
standard procedure [4, 141 the generating functional is given by 

Z[O]= [dA,]A[A,]exp i d4x CJo--9’* I [I ( ;ff )I 
with the gauge invariant A-’[A,] as 

[dAI@TA,l. ( 6 )  

It can be shown [4, 141 that A[A,] = det M, where M is the operator S%/Sh. It is 
essentially the gauge variation of the gauge fixing condition. Exponentiating det M 
by introducing anticommuting fields 7, 7j, one has 

where 2’GF= - (1 /2a)9*  and ZFPG can be determined once 9 is known. We now 
adopt this as the usual procedure [6] for 9given by (1). A calculation immediately gives 

S%/SA=a,dP +2AA,ap 
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which is the ghost Lagrangian for U( 1) gauge theory in the non-linear gauge (1). This 
agrees with (1 1) and (12) of 't Hooft and Veltman [ 151 wherein (8) is shown to reflect 
the internal structure of the non-local Bell-Treiman transformation 

d4x 'A(x-x ' )AV(x')AY(~')  

with 

A( x - x') = 4 $ exp[i k(  x - x')] 
(2.rr) 1 

(9) 

used to go from the gauge 9 = a,A@ to (1). Thus the full Lagrangian density is 

(10) Z=- 'F  FP"-' 2(a,Ap + AA,Ap)2 - i j d , a " ~  -2AijA,dpq. 
4 +U 

Contrary to the usual treatment of U(l) gauge theory with a linear gauge fixing 
condition, we have ghosts coupled with the photon field and the photon field has cubic 
and quartic couplings through the non-linear gauge fixing condition. The Feynman 
rules [15] from (10) are given below for the sake of completion and comparison with 
the similar rules in 9 3 .  
( a )  Photon propagator 

(6)  Ghost propagator 

I 1 .-------a -- 
i ( 2 ~ ) ~  k2-iig' 

(c) Ghost-photon vertex 

/ \ 

k 

( d )  Photon cubic vertex 
T 

a P 

(e )  Photon quartic vertex 

a '0 
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With these Feynman rules it can be verified that the photon-photon scattering amplitude 
at tree level vanishes identically, with gauge-invariant external sources and on the mass 
shell. 't Hooft and Veltman [ 151 have obtained the Ward identities for the Lagrangian 
(9) which can be used to show the independence of the scattering amplitude on A. 
The derivation of the Lagrangian for the ghosts (8) using the Hsu-Sudarshan formalism 
will be taken up in 0 5 .  Here we wish to point out the following. Firstly, the gauge 
fixing condition ( 1 )  for an Abelian theory is not unique. Gauge transforming A,, the 
new gauge field obeys the same gauge fixing condition only if the gauge function A obeys 

UA+2A,aFA+(a,A)(a*A) = O .  ( 1 1 )  

In a linear gauge, such as the Lorentz gauge, the corresponding equation will simply 
be Oh = 0 which has the unique solution A = 0 if one demands A to be non-singular 
and vanishing as x + CO. In the present context the above Gribov equation may have 
a non-trivial solution for A. This would then mean that the gauge fixing condition is 
not unique. Thus the statement that Abelian gauge theories will not have a Gribov 
ambiguity is true only for linear gauges. Even working with linear gauges, it has been 
shown [ 2 ]  that there will be a Gribov ambiguity in an Abelian gauge theory at finite 
temperature if one uses gauges that are defined on the full space (R3 x S ' )  such as the 
Lorentz gauge (covariant gauge). There, however, the use of the Coulomb gauge, 
which is defined on R3 alone, will not give rise to a Gribov ambiguity. Thus the 
existence of a Gribov ambiguity depends upon the gauge fixing condiiion as well as 
the gauge group. Secondly, the statement that in Abelian theories ghosts decouple 
from the gauge fields is not generally true. They do couple with the gauge fields in 
non-linear gauges. Similarly, photons can also have cubic and quartic couplings in 
non-linear gauges. Nevertheless, the relevant quantities, such as the S matrix elements, 
are independent of such unusual couplings. 

3. SU(N) Gauge theory in a non-linear gauge ( N  > 2) 

Consider the Lagrangian density 
CJ'= -'Fa F P u a  

4 ,U 

FEu = a,A: - d,Az + g f "b'ALA', 

whereTb'  are the (antisymmetric) structure constants of the SU(N)  group. The above 
Lagrangian is invariant under the gauge transformation 

A t  + A t  + 6AE 

6 A l =  Dtbw w" E S U ( N )  ( 1 3 )  
D~b~a ,6"b+gf" 'hA' ' .  

The gauge fixing condition is chosen to be 

9" = a,AHa + AdabCA~Apc .  ( 2 )  

We first follow the Faddeev-Popov procedure to find CJ'g,,,,. Accordingly, the gauge 
variation of ( 2 )  gives 

6 9 " / 6 w a  = 06"" -gAf a'odcefA~Apf  +gT'"A;a+ +2Ada"'A;ap +2Agdabcfbe"A;Alrc. 
(14) 



4598 R Parthasarathy 

The determinant of this operator is the familiar Faddeev-Popov determinant AFp which 
when exponentiated gives the Faddeev-Popov ghost Lagrangian as 

gFPG = -fjaawDra?7a - fja2Adab'Af,D*ha~m, (15) 

Before proceeding to the full Lagrangian to derive the Feynman rules, we note that 
to determine the ghost-gauge field coupling the a*Af, part in the first term of (15) is 
rewritten using (2). Then we obtain the following Feynman rules for the ghost sector. 

( a )  Ghost propagator: 
1 sa* 

*----e -- 
a a i ( 2 ~ ) ~  k2-ie '  

( b )  Ghost-gauge field coupling: 

In the first diagram in ( b )  there is an additional contribution from the A term in the 
gauge fixing condition. The second diagram ( b )  is not present in the usual case and 
appears to be a new diagram. Nevertheless, by using the Jacobi identity 

[ T,, { Tb, T,}] +cyclic = 0 

we find that d "ffbea + d "efbfa + d 
bution. 

The full Lagrangian is thus 

= 0 and hence this diagram gives zero contri- 

3 = -'Fa FP'a  _ _  1 (d,APa + AdabcAt'A*c)2 - ijda,D*ah77 - 2AijadahcA;D~ba7m 
2G 4 w u  

(16) 

which is the desired solution to the quantisation of SU(N)  Yang-Mills theory in the 
non-linear gauge (2). We have not considered the matter fields here. They can be 
added by the gauge-invariant prescription. We now write down the complete Feynman 
rules. 
( a )  Propagator for gauge field: 

( b )  Ghost propagator: 
1 s e------- ~~ 

a a i ( 2 ~ ) ~  (k2-iE)' 
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( c )  Gauge field cubic coupling: 

( d )  Gauge field quartic coupling: 

( e )  Ghost-gauge field coupling: 

/ 
U 'a 

/ I- \$ - ( 2 ~ ) ~ [ g f " ' " k ,  +2Ada'"k,]. 

These are the complete Feynman rules in the non-linear gauge ( 2 ) .  (The notation and 
convention for diagrams are the same as in [15].) This is one of the main results of 
this paper. Fermions can be added in the conventional manner whose Feynman rules 
have been given in the literature [4]. 

Let us now consider the gauge field-gauge field scattering amplitude at tree level. 
In the case of Abelian gauge theory, the photon-photon scattering amplitude is zero 
at tree level in linear gauges. In § 2 and in [15]  such amplitudes remain zero in the 
non-linear gauge despite the aforementioned self-couplings of the photons. However, 
in the case of non-Abelian gauge theory, the corresponding amplitude does not vanish 
at tree level in linear gauges owing to the inherent nature of the self-couplings of the 
Yang-Mills fields. Employing the non-linear gauge (2), these self-couplings involve 
the parameter A non-trivially, as can be seen from the Feynman rules. Here we would 
like to examine whether this amplitude is independent of A under the same gauge- 
invariant couplings with the external sources used in [ 151. At tree level there are four 
diagrams ( a ) ,  ( b ) ,  ( c )  and ( d )  that contribute to the scattering amplitude. These, for 
the Abelian case, are given in [ 15, p 611. We will not reproduce the diagrams here, but 
give the results only. To fix the notation we label the legs of diagram ( a )  of [15, p 611 
as ( a p p ) ,  (bvq ) ,  ( c p r )  and ( d u s )  clockwise starting from the left-hand top leg, where 
a, b, c, d are group indices, p, v, p, U are Lorentz indices and p ,  q, r, s are the respective 
momenta. The diagrams ( b ) ,  (c) and ( d )  of the above [15] are similarly labelled. 
Then the amplitudes for ( a ) ,  ( b )  and (c)  involve g', A' and Ag terms while that for 
( d )  involves only g' and A '  terms. Diagram ( d )  is simply the quartic coupling diagram 
given above. The A'  terms from ( a ) ,  ( b )  and (c) ,  respectively, are (choosing cy = 1) 
i( 2 ~ ) ~ 4 A  ' d  aded hecgpc,gyp, i ( 2 ~ ) ~ 4 A  ' d  '("d ehagc,pg,,p and i (  2 ~ ) ~ 4 A  ' d  edhd e''gc,,,g,p which, 
when added, cancel the A' term for diagram ( d ) .  The Ag terms for each of the ( a ) ,  
( b )  and ( c )  diagrams vanish due to the massless nature of the gauge fields. For example, 
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where k is the 4-momentum of the exchanged gauge field and we have p + k = s and 
q = k + r, the momentum conservation at each vertex. Using these momentum conserva- 
tions and the massless nature of the gauge fields ( q2 = p 2  = r2 = s2  = 0) this amplitude 
vanishes identically. Similarly, the Ag terms from diagrams ( b )  and (c) separately 
vanish. Thus the gauge field-gauge field scattering amplitude at tree level is shown to 
be independent of A. Unlike the Abelian case, the tree-level amplitude does not vanish 
due to g2 terms. The explicit expression for this is the same as in the Lorentz gauge 
and so we do not give this here. The main point here is that the use of a non-linear 
gauge gives the same expression for the above scattering amplitude as if we were 
working in a linear gauge, such as the Lorentz gauge. However, linear gauges are 
simple to use. Non-linear gauges can also be employed and, except for their lack of 
simplicity, non-linear gauges are equally as good as the linear gauges. 

We a o s e  this section with two observations relevant to non-linear gauges. First, 
it has already been pointed out that in Abelian gauge theory there will be Gribov 
ambiguity when non-linear gauges (1) are employed. In the case of non-Abelian gauge 
theory there will always be Gribov ambiguity, even if linear gauges are employed [3]. 
In non-linear gauges ( 2 )  for non-Abelian theories, there is surely Gribov ambiguity, 
thereby indicating that the gauge fixing condition is not unique, reflecting the general 
behaviour of the non-Abelian theories. For ( 2 ) ,  requiring the gauge transformed A; 
to obey the non-linear gauge fixing condition, we have the following differential 
equation: 

(18) 
for the gauge function w’. This is the Gribov equation in our case and should be 
compared with (1 1) for Abelian gauge theory. With A = 0 the usual Gribov equation 
is obtained. The above equation is non-linear in ua and may have interesting solutions 
whose existence reveals the non-uniqueness of the gauge fixing condition. Thus the 
non-linear gauge shares this non-uniqueness property with linear gauges. Second, one 
can generalise the Bell-Treiman transformation (9) to non-Abelian theories. The 
generalised form is 

a, ( Dpabu b ,  + 2hd abcAE( DWcdud)  + Ad abc( D Y w d ) (  DpCeue)  = 0 

A; + A; + Adabcd-2a,(AbyA”C) 

so that 

a,Apa + a,Apa +Ad abcAbyAuc. 

Thereby one can go from the Lorentz (linear) gauge to the non-linear gauge ( 2 ) .  
Explicitly: 

A: + A; - ihdabcdp d4x’ A(x - x‘)AbyAUC ( 2 0 )  I 
with A(x-x’) given by (9). One can effectively use this generalised Bell-Treiman 
transformation to derive the ghost Lagrangian following the procedure of ‘t Hooft and 
Veltman [15]. In this paper we have preferred to use the standard Faddeev-Popov 
procedure. In 0 5 we give another procedure using Lagrange multiplier fields. 
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4. BRS invariance and a non-linear gauge 

From the results of 0 3 we have the full Lagrangian as 

2'uii = -% + ~ G F  + ~ F P G  

with 
2 --1 a F v a  

0 -  4 F p v  

2 G F =  -( l /2a) (aWAwa + AdabcALAwc)* 

2 F p G  = - f a  ( S a e a ,  + 2Ad DFeb 7 '. 
The generating functional is 

460 1 

( 2 3 )  

The local Lorentz covariant 2fuil gave the necessary Feynman rules displayed in 0 3. 
One can instead use the measure [dA,] .hFP[A] to define the generating functional. 
The functional in ( 2 3 )  corresponds to a definite choice of the gauge fixing condition 
( 2 )  and so the effective action I d 4 ~ 2 f u , i  is not gauge invariant. However Becchi et a1 
[ 161 have shown that there exist transformations affecting simultaneously both the 
non-Abelian gauge fields and the fictitious ghost fields 7, f which leave the full 
Lagrangian invariant. These transformations for linear gauge fixing conditions (which 
introduce specific 2 F p G )  have been given in [ 4 ,  141. One of the purposes of these 
super transformations which mix commuting and anticommuting fields is to obtain a 
condition on Z so that 2 remains gauge invariant-the Slavnov-Taylor identities. 
Here we demonstrate the existence of such BRS transformations for 2fu,, in ( 2 1 )  and 
( 2 2 )  which corresponds to the choice of non-linear gauge fixing ( 2 ) .  These BRS 

transformations are given by 

S f a  = -(l/ag)(d,A'"" +AdabcALAFc)[ 

where [ is a constant Grassmann parameter, anticommuting with the ghosts 77 and 8 
and commuting with the gauge field A:. The full Lagrangian ( 2 1 )  and ( 2 2 )  will be 
seen to remain invariant under the transformations ( 2 4 ) .  Briefly 2,, remains obviously 
invariant since SA: = -( l / g ) ( D t b V b ) [  is a subclass ofthe general gauge transformation 
SAL = Dtbub with ub E G. The BRS variation of zGF is given by 

S 2 G F =  ( 1 /  ag)(a,A'"" + Ad a b C A ~ A I L C ) a + ( D P a b ' ~ b ' ) [  

+ ( 2 A  /ag)(d,Apa + AdabcALA'"C)dab'c'( DF'r] ')A""[ ( 2 5 )  
while that of the 2 F p G  is 

S 2 F p G  = -( l/ag)(a,A'"" + A d a b c A ~ A p c ) ~ , ( D w a b ' ~  b ' ) [ -  ( 6fja)2Ad abCAf,(DlLbb'7 b ' )  

-2AfadabC(~Af , )DPbb'77b'  (26) 
using S(D;'rlb') = 0 which can be easily verified using ( 2 4 ) .  The first term in S z G ,  
cancels the first term in SgFPG. In the second term in SLEGF, [ can be brought to the 
left of DL'7' with a sign change. Then, noting S f a  = -(l/cyg)(a,A*"" + A d a b c A ~ A p c ) [ ,  
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this second term in 
change in the full Lagrangian is 

cancels the second term in 6 2 F p G .  Thus the effective BRS 

S2full = -2Aijadab'(GAf,)DC"bb'r]b'. (27) 

Upon substituting for 6A' from (24), this becomes 

- (2A / g ) i j  " d ( D fi" 77 ) ( D C"be77 e ) 6. 
Since 77' is a Grassmann (anticommuting) field, Dibvb will also be Grassmannian. 
Denoting Dzbqb by x", we have S2fu,l = -(2A/g)ija dab' xtxpb6. As x b  anticommutes 
with x' and dab' is symmetric in b and c, the sum over b and c makes S2ru,, vanish. 
(When b = c, (,yb))' = 0 for every b.) This proves the invariance of the full Lagrangian 
under the BRS transformation given in (24) for the non-linear gauge (2). It can be 
easily seen that the BRS transformations (24) are nilpotent. 

Before proceeding to the derivation of Slavnov-Taylor identities, we now give the 
conserved BRS current so that the description may be complete. Following Nishijima 
[17] we define the current 

where @ is any generic field in 2full, a is the SU(N)  group index, p is the Lorentz 
index whenever necessary, the index i is for various fields present in 2fu,l and the 
summation is over all fields and the group index a. Straightforward evaluation then 
gives the conserved BRS current: 

J, = ( l /g)[  -ap (7 aiFzp) - 77uDpolPFzu] - (2/ .g)( 0:' rlP)(dpAC""" + Ad abcAEApc) 

(30) -1 2f a P Y  7 P 77 Y (-a,i j"+2Ad""A~ija).  

From this the BRS charge can be obtained as the spatial integral over Jo which can be 
used to obtain the transformations (24). 

We now take the generating functional (23) for consideration. It has been shown 
that the full Lagrangian is BRS invariant. We will introduce the sources for the fields 
A:, T " ,  i j "  and make a BRS transformation on the fields towards deriving the Slavnov- 
Taylor identities. First we show that the Jacobian of the transformation is unity. Writing 

so that 

and similarly for JI2,  JI3, JZl, J22, J2 3 ,  J31, J32 and J 3 3 ,  we find that det J = 1. Introducing 
the sources, we have 

Z[J, s, SI = [ [dA,l[d77l[d?71 

X eXp( i [ d4X(20+ ~ G F +  ~ F P G  + J:AC"" + ? " S a  + 3'77") . 1 (31 )  

The BRS transformations (24) are made on A;, 7" and f a .  The measure does not 
change, and neither does 20+2GF+2FpG. The source terms, however, do change. 
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After making the BRS transformation, following Faddeev and Slavnov [ 141, we equate 
the derivative dZ: /d t  to zero, from which we obtain the following identity, after 
differentiating with respect to 7 and setting 7 = i j  = 0: 

L[d,(iS) i SJE +Adab'(\&) ( \ $ - ) ] Z ( J )  a 

where 

with Gc.(x,  y )  as the ghost propagator in the presence of J and M,, the differential 
operator given in (14) with A: replaced by 

We close this section by stating that these identities can be used to show the indepen- 
dence of the gauge field-gauge field scattering amplitude on A following 't Hooft and 
Veltman [ 151 wherein the Abelian case has been discussed. As the necessary steps are 
already given in [ 151 we do not repeat this straightforward calculation here. 

5. Lagrange multiplier formalism 

In the introduction we stated that there are two different but related formalisms for 
obtaining the Lagrangian for the ghosts in a gauge field theory. In 0 3 we adopted the 
Faddeev-Popov method, based on the gauge variation of the gauge fixing condition, 
to obtain the ZFPG for the non-linear gauge fixing condition (2). It would be worthwhile 
to examine whether the Faddeev-Popov formalism gives the correct ZFPG, in the sense 
that the theory so obtained is gauge invariant and unitary. Formal proofs to this effect 
have been given in [7-lo]. Nonetheless, it is desirable, especially in view of the 
non-linear gauge (2), to obtain ZFPG in a different formalism. Hsu and Sudarshan 
[12] proposed a different formalism based on the Lagrange multiplier fields. 

We briefly review the Lagrange multiplier formalism now. The method consists of 
taking into account the gauge fixing condition through a Lagrange multiplier field. 
The field equations for the gauge field and the Lagrange multiplier field are obtained. 
These field equations are rearranged so that the multiplier field has a simple coupling 
with the gauge field. The gauge fields appearing in the gauge fixing condition are 
allowed to have a gauge transformation. This gives an equation for the gauge function. 
Detailed considerations [12] lead one to consider the multiplier field and the gauge 
function to correspond to the unphysical degrees of freedom of the gauge field. The 
two equations for the multiplier field and the gauge function completely determine 
the coupling of the unphysical components of the gauge field, and could be derived 
from a Lagrangian. In the generating functional, an integration over these two fields 
gives a factor which essentially gives the unitarisation factor, which is AFP.  This factor 
may be viewed as being generated by a fictitious ghost field. In contrast to the 
Faddeev-Popov method, this method uses extensively the field equations for the gauge 
field. The details concerning the unitarisation of the S matrix by this method are given 
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in [ l l ]  and here we are mainly interested in getting the form of the Lagrangian for 
the ghosts. 

For our purpose, we introduce a Lagrange multiplier field x a  and consider the 
Lagrangian 

2= -aF:,F,ua+(1/2~)~O(a,A,n +AdabCALApc)+ ( ~ / ~ C Y * ) X ~ X ~ .  (34) 

This Lagrangian leads to the field equations 
a " F ~ p - ( 1 / 2 ~ ) a p ~ n = g f n b c F ~ p A p c - ( A / ~ ) d  nbc x b Af, 

(35) 
a,Apn + Adnb'ALAlrC + ( 1 / 2 a ) x n  = 0. 

Using the second equation in the first, we get 

OAE+J:=O (36) 

(37) 

(38) 

where 

J ;  = Ad O b c a ,  (Ab,A"') + gfabcdv(  AUbAf,) + g f abcA"bF~p + ( A  / a ) d  ObcxbAfL. 

The divergence of (36) together with the second equation in (35) gives 

( 1 / 2 a ) 0 x a  + A ~ ~ ~ ~ I J ( A ; A ~ ~ )  = a,J"". 

Using (37), a,J'" can be evaluated and then (38) becomes 

OX' = - g f " b ' A ~ ( d w ~ C ) + 2 A d n b ' ~ , ( A C " b ~ ' )  +2Agfbcdcd'Ab,Awe~d (39) 

which gives the coupling of the (unphysical) multiplier field with the gauge field. 
Following Hsu and Sudarshan [ 1 2 ] ,  the source terms in the field equations for the 
Lagrange multiplier fields x n  produce extra unwanted amplitudes that upset the 
unitarity. This is the dynamical origin of the extra amplitudes. The method used to 
cancel the extra amplitude is to introduce complex fictitious ghosts with the same 
couplings as given in (39). The fictitious ghost Lagrangian is constructed according 
to (39) and the gauge fixing condition ( 2 ) .  The other unphysical component (other 
than x " )  is to be identified with the gauge function x t a  which is given by 

A: + A: + DEbxtb. 

The gauge function X I "  must obey an equation so that the gauge transformed A: obeys 
again the same gauge fixing condition ( 2 ) .  This immediately leads to 

(40) ox'" = - g  f abcap (AWbxtc) - 2 A d n b C A ~ a ~ x t C  - 2Agdnbc~deALAFd~",  

It will be realised that (39) coincides with the field equation for e n  and (40) with that 
for vu obtained from zFpG given by ( 1 5 ) .  A Lagrangian for the unphysical fields ,ya 
and x f a  can be written as 

3 ( x ,  x') = ( d , x " ) ( ~ ~ , y ' " )  + gfncb(a,Xn)A"'X'b 

- 2 A d a b c ~ n A ~ ( a p ~ t b  + g fbdeAPdXte) ,  

To avoid the extra amplitude this must be added to the 2,, and an integration over 
x a ,  XI' must be performed. This can be done easily to produce the unitarisation factor, 
the Faddeev-Popov determinant. This is exponentiated by introducing the anticommut- 
ing scalar fields which are precisely the same as those in ( 1 5 ) .  Thus we have shown 
that the method of Hsu-Sudarshan E121 based upon the Lagrange multiplier fields 
gives the same ZFpG ( 1 5 )  as obtained by the Faddeev-Popov method. Quite apart 
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from the dynamical origin of A F p  in the second formalism, and the explicit method to 
isolate the unwanted amplitude, we would like to point out that this method explicitly 
makes use of the field equations for the A: field and in this sense consults at every 
stage. This is to be contrasted with the Faddeev-Popov method which requires just 
the gauge variation of the gauge fixing condition to write down the ghost Lagrangian. 

For the sake of completeness we now give the construction procedure for ZFpG for 
Abelian theory in the non-linear gauge (1). The gauge variation of the gauge fixing 
condition ( 1 )  gave 

2 F p G  = - i j d , d @ ~  -2AijA,dpq (8) 

which incidentally can be obtained from ( 1 5 )  by setting g = 0 and dabc  = 1 ,  removing 
the SU( N )  indices. To use the Lagrange multiplier formalism of Hsu-Sudarshan [ 121 
we introduce the multiplier field x as 

(42) 2 = - - ’ F  F P ” + -  ix(d,AF + AA,A’”) +&* 
which leads to the field equations 

Differentiating the second equation with respect to x u  and using in the first, we have 

CIA, + J,  = 0 

J, = 2AA,,d,A” -2AA,(d,,A” + AA,A”). 
(44) 

Taking the divergence of the first equation in (44) and using (43), we obtain 

Ox = 2Ad,(A”x) (45) 
which gives the source for x, coupling with A, which is the source for the violation 
of unitarity. Making the gauge transformation A, + A, +d,x’ on the non-linear gauge 
fixing condition ( l ) ,  we have 

Ox’+2AA,(dFx’) = 0. (46) 
Equations (45) and (46) completely determine the coupling of the unphysical com- 
ponents in A,(x) .  (For linear gauges, x and x’ obey sourceless free-field equations 
and hence the statement that the ghosts eventually decouple from the gauge field.) 
These equations can be obtained from a Lagrangian 

2 ( x ,  x‘) = x ~ , ~ ~ x ’ + ~ A x A , ~ ~ x  (47) 

which has the same form as (8) .  However, x and x’ are not to be identified with 
ghosts. This Lagrangian has to be added to and an integration over x and x‘ in 
the generating functional produces a determinant which will be the same as A F p .  

Exponentiating this by introducing the anticommuting scalar fields will lead to (8). 
It has thus been demonstrated that the ghost Lagrangian derived using the Faddeev- 

Popov procedure and the Hsu-Sudarshan procedure are the same for non-linear gauges 
in Abelian and non-Abelian theories. We hasten to add that we have not given the 
complete details of both the methods explaining how the unitarity is cured and how 
the physical states are to be constructed. Our purpose here is to bring out the form 
for the ghost Lagrangian in both the methods. Our demonstration at least indicates 
that the Faddeev-Popov procedure can be used for non-linear gauges as well. 
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6. Summary 

Certain aspects of the non-linear gauge fixing condition in gauge field theories were 
given. Inspired by the use of the non-linear gauge (1) for Abelian theory, a generalisa- 
tion of (1) for the non-Abelian theory (2) was considered. After reviewing the Abelian 
theory, the ghost Lagrangian for SU( N )  gauge theory was constructed. Feynman rules 
were systematically derived from the full Lagrangian. This is one of our main results. 
The gauge field-gauge field scattering amplitude was shown to be independent of the 
parameter A explicitly at tree level. So the amplitude was the same as if one was using 
the (linear) Lorentz gauge. A similar demonstration for an Abelian theory has been 
done by ‘t Hooft and Veltman [15]. The full S U ( N )  Lagrangian including 2?GF and 
2?FpG was shown to have BRS invariance and the form of the BRS transformations and 
current were displayed. After showing the Jacobian for BRS change, for the measure 
in the generating functional being unity, the Slavnov-Taylor identities were derived, 
which can be used to consider one-loop amplitudes to demonstrate their gauge invari- 
ance. This completed the major part of the paper. Although the Faddeev-Popov 
procedure has been formally proved to give a unitary and gauge-invariant S matrix, 
we investigated the crucial 3 F p G  by appealing to a different procedure, developed by 
Hsu and Sudarshan. It is worth noting that this method effectively makes use of the 
field equations for the gauge field and Lagrange multiplier field and gives physical 
insight to the Faddeev-Popov determinant. By using this method, we demonstrated 
that the ghost Lagrangian obtained this way coincides with that obtained by the former 
method. The role of the Bell-Treiman transformation was briefly discussed. It was 
noted explicitly that the statement, that in Abelian theories the ghosts decouple from 
the gauge fields, is true only in linear gauges. In a non-linear gauge, they have a 
non-trivial coupling with the gauge fields. This can be clearly seen in (45) and (46), 
which give sources for the Lagrange multiplier fields. In a similar way, the statement 
that the Abelian gauge theories do not have Gribov ambiguity, or equivalently that 
one can have a unique gauge fixing condition, is gauge dependent. It means that in 
Abelian theories one can choose a unique linear gauge in which there are no Gribov 
ambiguities. The use of non-linear gauge in Abelian theories makes the non-uniqueness 
transparent. In non-Abelian theories, the non-linear gauge brings additional non-linear 
terms in the Gribov equation. For perturbative calculations, these ambiguities can be 
ignored. The Feynman rules derived here can be used for perturbative calculations 
and one such application shows that the results are identical with those obtained with 
Feynman rules for a linear gauge fixing condition. 
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